Термины из этой статьи

Квантовая механика волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а…(дальше)

Квантовая теория поля. Квантовая теория поля - квантовая теория систем с бесконечным числом степеней свободы (полей физических).К. т. п., возникшая как обобщение квантовой механики в связи с проблемой…(дальше)

Матрица в математике, система элементов aij (чисел, функций или иных величин, над которыми можно производить алгебраические операции), расположенных в виде прямоугольной схемы. Если схема имеет m…(дальше)

Линейный оператор, обобщение понятия линейного преобразования на линейные пространства. Линейным оператором F на линейном пространстве Е называют функцию F(x), определённую для всех х I Е, значения…(дальше)

Суперпозиции принцип, принцип наложения, 1) допущение, согласно которому если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять…(дальше)

Эрмитов оператор, бесконечномерный аналог эрмитова линейного преобразования (см. Эрмитова форма). Линейный ограниченный оператор А в комплексном гильбертовом пространстве и называется эрмитовым, если…(дальше)

Перестановочные соотношения, коммутационные соотношения, фундаментальные соотношения в квантовой механике, устанавливающие связь между последовательными действиями на волновую функцию (или вектор…(дальше)

Унитарный оператор, обобщение понятия вращения евклидова пространства на бесконечномерный случай. Именно, У. о. - оператор вращений гильбертова пространства вокруг нулевой точки. Оператор U…(дальше)

Механики уравнения канонические, уравнения Гамильтона, дифференциальные уравнения движения механической системы, в которых переменными, кроме обобщённых координатqi, являются обобщённые импульсыpi;…(дальше)

Обращение времени, математическая операция замены знака времени в уравнениях, описывающих развитие во времени какой-либо физической системы (в уравнениях движения). Такая замена отвечает определённой…(дальше)

Квантование вторичное, метод, применяемый в квантовой механике и квантовой теории поля для исследования систем, состоящих из многих или из бесконечного числа частиц (или квазичастиц).В этом методе…(дальше)

Квантовая теория поля. Квантовая теория поля - квантовая теория систем с бесконечным числом степеней свободы (полей физических).К. т. п., возникшая как обобщение квантовой механики в связи с проблемой…(дальше)

Квантовая механика волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а…(дальше)

Квантовая теория поля. Квантовая теория поля - квантовая теория систем с бесконечным числом степеней свободы (полей физических).К. т. п., возникшая как обобщение квантовой механики в связи с проблемой…(дальше)

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Операторы

Операторы в квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики и квантовой теории поля и служащее для сопоставления определённому вектору состояния (или волновой функции) y др. определённых векторов (функций) y'. Соотношение между y и y' записывается в виде y' = y, где — оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О. (О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) y, т. е. на величину, описывающую состояние физической системы.

Простейшие виды О., действующих на волновую функцию y(х) (где х — координата частицы), — О. умножения (например, О. координаты , y = хy) и о. дифференцирования (например, О. импульса , y = , где i — мнимая единица, — постоянная Планка). Если y — вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу — матрицу.

В квантовой механике в основном используются линейные операторы. Это означает, что они обладают следующим свойством: если y1 = y'1 и y2=y'2, то (c1y1 + c2y2) = c1y'1 + c2y'2, где c1 и с2— комплексные числа. Это свойство отражает суперпозиции принцип —один из основных принципов квантовой механики.

Существенные свойства О. определяются уравнением yn = lnyn, где ln — число. Решения этого уравнения yn называется собственными функциями (собственными векторами) оператора . Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение ln. Числа ln называется собственными значениями О. , а их совокупность — спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее y n, имеет решение при любом значении ln (в определённой области), во втором — решения существуют только при определённых дискретных значениях ln. Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил — непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.

Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии y должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) yn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов.

С О. можно производить алгебраич. действия. В частности, под произведением О. 1 и 2 понимается такой О. = 1 2, действие которого на вектор (функцию) y даёт y = y’’, если 2y = y’ и 1y’= y’’.Произведение О. в общем случае зависит от порядка сомножителей, т. е. 1 2¹ 2 1. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство 1 2= 2 1 (см. Перестановочные соотношения).

Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классической механики (гейзенберговское представление в квантовой механике), если заменить физические величины, входящие в уравнения классической механики, соответствующими им О. Всё различие между квантовой и классической механикой сведется тогда к различию алгебр. Поэтому О. в квантовой механике иногда называют q-числами, в отличие от с-чисел, т. е. обыкновенных чисел, с которыми имеет дело классическая механика.

О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом которых являются унитарные операторы. Унитарные О. не меняют норм ("длин") векторов и "углов" между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханической системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классической механике играют канонические преобразования (см. Механики уравнения канонические).

В квантовой механике применяется также О. комплексного сопряжения, не являющийся линейным. Произведение такого О. на унитарный О. называются антиунитарным О. Антиунитарные О. описывают преобразование обращения времени и некоторые др.

В теории квантовых систем, состоящих из тождественных частиц, широко применяется метод квантования вторичного, в котором рассматриваются состояния с неопределённым или переменным числом частиц и вводятся О., действие которых на вектор состояния с данным числом частиц приводит к вектору состояния с измененным на единицу числом частиц (О. рождения и поглощения частиц). О. рождения или поглощения частицы в данной точке х, (х) формально подобен волновой функции y(х), как q- и с-числа, отвечающие одной и той же физической величине соответственно в квантовой и классической механике. Такие О. образуют квантованные поля, играющие фундаментальную роль в релятивистских квантовых теориях (квантовой электродинамике, теории элементарных частиц; см. Квантовая теория поля).

Лит. см. при статьях Квантовая механика, Квантовая теория поля.

В. Б. Берестецкий.

 А  Б  В  Г  Д  Е  Ж  З  И  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Ы  Э  Ю  Я 
SovEncyclopedia.ru © 2010|Сылка на источник при распространении материалов обязательна