Термины из этой статьи

Собственные функции, понятие математического анализа. При решении многих задач математической физики (в теории колебаний, теплопроводности и т.д.) возникает необходимость в нахождении не равных…(дальше)

Линейный оператор, обобщение понятия линейного преобразования на линейные пространства. Линейным оператором F на линейном пространстве Е называют функцию F(x), определённую для всех х I Е, значения…(дальше)

Фурье ряд, тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид ,где a0, an, bn (n 3 1) - Фурье…(дальше)

Полная система функций, такая система функций Ф = {j(x:)}, определённых на отрезке [a, b], что не существует функции f (x), для которой, и которая была бы ортогональна ко всем функциям j(х) из Ф, т. е…(дальше)

Фурье интеграл, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x) удовлетворяет на каждом…(дальше)

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Спектральное разложение (линейная алгебра)

Спектральное разложение функции, разложение функции в ряд по собственным функциям некоторого линейного оператора (например, конечно-разностного, дифференциального или интегрального), действующего в функциональном пространстве, или одно из возможных обобщений такого разложения. Частным случаем С. р. является разложение функции, заданной на конечном отрезке, в Фурье ряд (т. е. гармонический анализ колебаний), а также разложения по другим известным полным системам функций. В случае линейного оператора А, имеющего непрерывный спектр, собственные функции, понимаемые в обычном смысле, не существуют; тем не менее и здесь весьма часто удаётся определить эти функции (но только они уже не будут являться элементами того функционального пространства, в котором действует оператор А) и задать С. р. широкого класса функций как разложение в интеграл по системе функций, зависящей от непрерывно изменяющегося аргумента (пример С. р. этого типа — разложение в Фурье интеграл). Для несамосопряжённых операторов А наряду с собственными функциями приходится рассматривать ещё и цепочки функций, присоединённых к собственным функциям; однако и для таких операторов в функциональных пространствах во многих случаях удаётся доказать теорему о полноте системы всех собственных и присоединённых функций и, исходя отсюда, получить С. р. широкого класса функций по всевозможным собственным и присоединённым функциям оператора А.

С. р. функций широко используются для решения различных конечно-разностных, дифференциальных и интегральных уравнений и находят многочисленные приложения в задачах классической механики (особенно теории колебаний), электродинамики, квантовой механики, теории связи, теории автоматического управления и других разделах математической физики и прикладной математики.

Лит.: Березанский Ю. М., Разложение по собственным функциям самосопряженных операторов, К., 1965; Титчмарш Э. Ч., Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка, пер. с англ., т. 1—2, М., 1960—61; Наймарк М. А., Линейные дифференциальные операторы, 2 изд., М., 1969; Левитан Б. М., Capгсян И. С., Введение в спектральную теорию (самосопряженные обыкновенные дифференциальные операторы), М., 1970.

А. М. Яглом.

 А  Б  В  Г  Д  Е  Ж  З  И  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Ы  Э  Ю  Я 
SovEncyclopedia.ru © 2010|Сылка на источник при распространении материалов обязательна